Functional expression of a human Na+/H+ antiporter gene transfected into antiporter-deficient mouse L cells.

نویسندگان

  • A Franchi
  • D Perucca-Lostanlen
  • J Pouyssegur
چکیده

To clone the gene for the human Na+/H+ antiporter, we first constructed a stable mouse LTK- cell line (LAP1) lacking Na+/H+ antiport activity. Second, we devised a selective technique based on acid killing that specifically sorts out cells expressing low levels of Na+/H+ antiport activity from a population of antiporter-deficient cells (AP-). LAP1 cells (TK- and AP-) were cotransformed with human genomic DNA and the thymidine kinase (TK) gene. TK+ transformants, first selected, were submitted to acid loading. The rare transformants that survived (frequency, 2-8 X 10(-7) expressed Na+/H+ antiport activity (AP+). We found that: transformation with mouse LAP1 DNA did not give rise to AP+ transformants; transformation of LAP1 cells with DNA from an altered Na+/H+ antiporter hamster variant led to AP+ transformants expressing the altered Na+/H+ antiporter of the DNA donor; human repeated sequences were present in all primary, secondary, and tertiary mouse AP+ transformants; six identical EcoRI human DNA fragments (55 kilobase pairs of the human genome) cosegregated with the Na+/H+ antiport activity in secondary and tertiary transformants. These results strongly suggest that we have stably expressed the structural gene for the human Na+/H+ antiporter in mouse cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

Improved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1

A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...

متن کامل

Cloning and expression of the Na+/H+exchanger from Amphiuma RBCs: resemblance to mammalian NHE1.

The cDNA encoding the Na+/H+exchanger (NHE) from Amphiumaerythrocytes was cloned, sequenced, and found to be highly homologous to the human NHE1 isoform (hNHE1), with 79% identity and 89% similarity at the amino acid level. Sequence comparisons with other NHEs indicate that the Amphiuma tridactylum NHE isoform 1 (atNHE1) is likely to be a phylogenetic progenitor of mammalian NHE1. The atNHE1 pr...

متن کامل

Heterologous expression of Na+/H+ antiporter gene (CvNHA1) from salt-tolerant yeast Candida versatilis in Saccharomyces cerevisiae Na+-transporter deficient mutants.

A Na(+)/H(+) antiporter gene (CvNHA1) was cloned from the salt-tolerant yeast Candida versatilis. CvNHA1 encodes an antiporter with a typical yeast plasma membrane Na(+)/H(+) antiporter structure. Transcription of CvNHA1 in C. versatilis cells was dependent on the salinity of the culture. When CvNHA1 was expressed in salt-sensitive Saccharomyces cerevisiae cells, increased salt-tolerance was ob...

متن کامل

Molecular cloning, tissue distribution, and functional expression of the human Na+/H+exchanger NHE2.

In the present report, we describe the cloning of a human colonic cDNA that describes the full-length Na+/H+exchanger (NHE) 2 coding region. The human NHE2 (hNHE2) cDNA encodes for a polypeptide of 812 amino acids with a 90% overall identity to both rabbit and rat NHE2 isoforms. In comparison with SLC9A2, recently reported as the human NHE2, the hNHE2 polypeptide is 115 amino acids longer in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 83 24  شماره 

صفحات  -

تاریخ انتشار 1986